Over-the-Internet

User-Centric Content Management for Secure Elements in Mobile Devices

Mohamed Sabt^{1,3} Mohammed Achemlal^{1,2} Abdelmadjid Bouabdallah³

¹Orange Labs, France

²Greyc EnsiCaen, France

³Sorbonne universités, UTC, France

MobiSecServ, February 2015

Over-the-Internet

E N 4 E N

Introduction

- Smart objects
- Smart Secure Elements

æ

∃ → (∃ →

Introduction

- Smart objects
- Smart Secure Elements

Over-the-Internet

Goals

2

Architecture

< E

Introduction

- Smart objects
- Smart Secure Elements

Over-the-Internet

- Goals
- Architecture
- Implementation and Evaluation
 - Implementation
 - Evaluation
 - Perspectives

-

Introduction (1)

- Smart objects
- Smart Secure Elements

- Goals
- Architecture
- - Implementation
 - Evaluation
 - Perspectives

3 / 25

47 ▶

Smart objects

Smartphones

What makes them smart?

Nokia N900

iPhone 1

3

M.Sabt et al. (Orange Labs)

Over-the-Internet

MobiSecServ, February 2015

<ロ> (日) (日) (日) (日) (日)

The *iPhone* Effect

Description

Users can easily personalize their devices with third-party applications, and service providers can easily make their applications available to end users.

Smartness

smartness is not measured by features, it is about application management.

Introduction

- Smart objects
- Smart Secure Elements

Over-the-Internet

- Goals
- Architecture
- 3 Implementation and Evaluation
 - Implementation
 - Evaluation
 - Perspectives

Secure Element

Definition

A secure element (SE) is a tamper-resistant smart card chip capable of running applications (called applets or cardlets) with a high level of security.

There are 3 form-factors of SE:

- Embedded smart card;
- SD card;
- SIM/UICC.

Secure Element

Definition

A secure element (SE) is a tamper-resistant smart card chip capable of running applications (called applets or cardlets) with a high level of security.

There are 3 form-factors of SE:

- Embedded smart card;
- SD card;
- SIM/UICC.

The NFC Ecosystem

The management of NFC applications

The unsolved problem

NFC services consist of two applications:

- Applet: installed on the SE;
- **2** UI app: installed on the smartphone.

Management Problems

- The content management of SE is controlled by the SE owner;
- Current platforms in charge of content management are not adapted to install NFC applets;
- The life-cycles of applet and UI app are independent.

Goals

Outline

Introduction

- Smart objects
- Smart Secure Elements

Over-the-InternetGoals

- Architecture
- 3 Implementation and Evaluation
 - Implementation
 - Evaluation
 - Perspectives

Goals

Design objectives

Problem Statement

Our goal is to design a content management system for NFC enabled services that overcome the shortcomings of the current systems.

Goals

Design objectives

Problem Statement

Our goal is to design a content management system for NFC enabled services that overcome the shortcomings of the current systems.

Design requirements

- Deployable: deployability depends on the induced cost and compatibility with industry standards;
- Provide a straight of the s
- Secure: only authenticated contents are allowed;
- Tied life-cycle: applet and UI app are managed together.

A B b

Introduction

- Smart objects
- Smart Secure Elements

2

Over-the-Internet

- Goals
- Architecture
- Implementation and Evaluation
 - Implementation
 - Evaluation
 - Perspectives

3

(本間) (本語) (本語)

Architecture

Installation Process

Workflow of installation

Users ask for a particular NFC service;

M.Sabt et al. (Orange Labs)

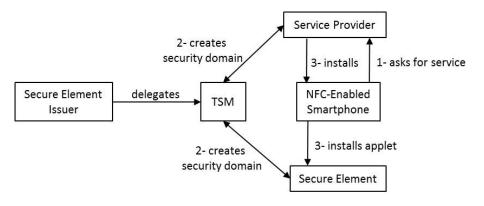
Workflow of installation

- Users ask for a particular NFC service;
- Once installed, the UI app contacts the service provider to install the applet;

Workflow of installation

- Users ask for a particular NFC service;
- Once installed, the UI app contacts the service provider to install the applet;
- O The service provider creates a private space in the SE;

Workflow of installation


- Users ask for a particular NFC service;
- Once installed, the UI app contacts the service provider to install the applet;
- Interpretation of the service provider creates a private space in the SE;
- The service provider sets up a secure communication channel with the SE;

Workflow of installation

- Users ask for a particular NFC service;
- Once installed, the UI app contacts the service provider to install the applet;
- In the service provider creates a private space in the SE;
- The service provider sets up a secure communication channel with the SE;
- The applet is sent and installed on the SE.

Overview of the OTI architecture

M.Sabt et al. (Orange Labs)

∃ ► < ∃ ►</p>

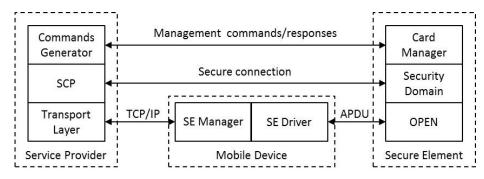
3

Architecture

Some technical details

Private Space in SE

- We leverage the concept of Security Domain defined by GlobalPlatform
- A Security Domain (SD) is created using the radio interface.
- Once created, the service providers get the secret keys that allow them to set up a secure connection with the corresponding SD.


Wireless technology

- We leverage Internet connection to communicate with SE.
- SEs are not directly connected to the Internet.
- A bridge application is required to send the APDUs encapsulated into IP packets to the SE.

A B A A B A

orange

Secure Channel Protocol

∃ → (∃ →

э

Updating Process

Workflow of updating

The service provider hosts a database containing, for each SE, the version of the installed applet.

Updating Process

Workflow of updating

- The service provider hosts a database containing, for each SE, the version of the installed applet.
- Once an update required, the service provider sends a PUSH message to the corresponding mobile device.

Architecture

Updating Process

Workflow of updating

- The service provider hosts a database containing, for each SE, the version of the installed applet.
- Once an update required, the service provider sends a PUSH message to the corresponding mobile device.
- The mobile device downloads the new UI app, installs the applet and then installs the UL

Architecture

Updating Process

Workflow of updating

- In the service provider hosts a database containing, for each SE, the version of the installed applet.
- Once an update required, the service provider sends a PUSH message to the corresponding mobile device.
- The mobile device downloads the new UI app, installs the applet and then installs the UI
- At the end, the SE sends a cryptographic ACK to the service provider in order to update its database.

Introduction

- Smart objects
- Smart Secure Elements

Over-the-Internet

- Goals
- Architecture

Implementation and Evaluation

- Implementation
- Evaluation
- Perspectives

 Samsung Galaxy SII with Android 4.0.3 (ICS) and containing the SmartCard API library;

- Samsung Galaxy SII with Android 4.0.3 (ICS) and containing the SmartCard API library;
- Oberthur UICC JavaCard 2.2.2;

- Samsung Galaxy SII with Android 4.0.3 (ICS) and containing the SmartCard API library;
- Oberthur UICC JavaCard 2.2.2;
- Android webview, HTML5 and CCS3;

- Samsung Galaxy SII with Android 4.0.3 (ICS) and containing the SmartCard API library;
- Oberthur UICC JavaCard 2.2.2;
- Android webview, HTML5 and CCS3;
- SE API implemented in JavaScript (Ajase);

- Samsung Galaxy SII with Android 4.0.3 (ICS) and containing the SmartCard API library;
- Oberthur UICC JavaCard 2.2.2;
- Android webview, HTML5 and CCS3;
- SE API implemented in JavaScript (Ajase);
- GlobalPlatform card specification 2.2.1 implemented in Java 7;

- Samsung Galaxy SII with Android 4.0.3 (ICS) and containing the SmartCard API library;
- Oberthur UICC JavaCard 2.2.2;
- Android webview, HTML5 and CCS3;
- SE API implemented in JavaScript (Ajase);
- GlobalPlatform card specification 2.2.1 implemented in Java 7;
- Orange OTA platform.

Introduction

- Smart objects
- Smart Secure Elements

Over-the-Internet

- Goals
- Architecture

Implementation and Evaluation

- Implementation
- Evaluation
- Perspectives

ም.

A B b A B b

Evaluation

Content Management Platform	Average of Download Time		
OTW (Over-the-Wire)	18.2 seconds		
OTI (Over-the-Internet)	25.7 seconds		
OTA (Over-the-Air)	5.42 minutes		

Comparison of download time of 9-kilobyte-JavaCard applet

(日) (同) (三) (三)

Introduction

- Smart objects
- Smart Secure Elements

Over-the-Internet

- Goals
- Architecture

Implementation and Evaluation

- Implementation
- Evaluation
- Perspectives

A B F A B F

Perspectives

Perspectives

 More thorough evaluation of the OTI platform (i.e. comparison with BIP);

글 > - - - 글 >

Perspectives

Perspectives

- More thorough evaluation of the OTI platform (i.e. comparison with BIP);
- Integrating users' permission in the process of creating security domains.

M.Sabt et al. (Orange Labs)

Summary

- The most difficult problem in the NFC ecosystem is not security, but applications management;
- OTI is an efficient management system for secure element based NFC applications in mobile devices;
- OTI does not trade off deployability and security;
- OTI is faster and more reliable than SMS-based OTA platforms.

Thank you for your attention!

I	v	.Sa	bt	et a	. (C	range	abs	
			DL.	ct a	• •	~	n ange	LaD3	

Over-the-Internet

orange